Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.172
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2310291121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564641

RESUMO

Humans blink their eyes frequently during normal viewing, more often than it seems necessary for keeping the cornea well lubricated. Since the closure of the eyelid disrupts the image on the retina, eye blinks are commonly assumed to be detrimental to visual processing. However, blinks also provide luminance transients rich in spatial information to neural pathways highly sensitive to temporal changes. Here, we report that the luminance modulations from blinks enhance visual sensitivity. By coupling high-resolution eye tracking in human observers with modeling of blink transients and spectral analysis of visual input signals, we show that blinking increases the power of retinal stimulation and that this effect significantly enhances visibility despite the time lost in exposure to the external scene. We further show that, as predicted from the spectral content of input signals, this enhancement is selective for stimuli at low spatial frequencies and occurs irrespective of whether the luminance transients are actively generated or passively experienced. These findings indicate that, like eye movements, blinking acts as a computational component of a visual processing strategy that uses motor behavior to reformat spatial information into the temporal domain.


Assuntos
Piscadela , Movimentos Oculares , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia , Visão Ocular
2.
PLoS Biol ; 22(4): e3002564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557761

RESUMO

Behavioral and neuroscience studies in humans and primates have shown that memorability is an intrinsic property of an image that predicts its strength of encoding into and retrieval from memory. While previous work has independently probed when or where this memorability effect may occur in the human brain, a description of its spatiotemporal dynamics is missing. Here, we used representational similarity analysis (RSA) to combine functional magnetic resonance imaging (fMRI) with source-estimated magnetoencephalography (MEG) to simultaneously measure when and where the human cortex is sensitive to differences in image memorability. Results reveal that visual perception of High Memorable images, compared to Low Memorable images, recruits a set of regions of interest (ROIs) distributed throughout the ventral visual cortex: a late memorability response (from around 300 ms) in early visual cortex (EVC), inferior temporal cortex, lateral occipital cortex, fusiform gyrus, and banks of the superior temporal sulcus. Image memorability magnitude results are represented after high-level feature processing in visual regions and reflected in classical memory regions in the medial temporal lobe (MTL). Our results present, to our knowledge, the first unified spatiotemporal account of visual memorability effect across the human cortex, further supporting the levels-of-processing theory of perception and memory.


Assuntos
Encéfalo , Percepção Visual , Animais , Humanos , Percepção Visual/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
3.
Sci Rep ; 14(1): 8143, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584222

RESUMO

The biographies of some celebrated artists are marked by accounts that paint a far from beautiful portrait. Does this negative-social knowledge influence the aesthetic experience of an artwork? Does an artist's fame protect their paintings from such an influence? We present two preregistered experiments examining the effect of social-emotional biographical knowledge about famous and unknown artists on the reception and perception of their paintings, using aesthetic ratings and neurocognitive measures. In Experiment 1, paintings attributed to artists characterised by negative biographical information were liked less, evoked greater feelings of arousal and were judged lower in terms of quality, than paintings by artists associated with neutral information. No modulation of artist renown was found. Experiment 2 fully replicated these behavioural results and revealed that paintings by artists associated with negative social-emotional knowledge also elicited enhanced early brain activity related to visual perception (P1) and early emotional arousal (early posterior negativity; EPN). Together, the findings suggest that negative knowledge about famous artists can shape not only explicit aesthetic evaluations, but may also penetrate the perception of the artwork itself.


Assuntos
Pinturas , Percepção Visual/fisiologia , Emoções
4.
J Headache Pain ; 25(1): 53, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584260

RESUMO

BACKGROUND: Visual snow syndrome is a disorder characterized by the combination of typical perceptual disturbances. The clinical picture suggests an impairment of visual filtering mechanisms and might involve primary and secondary visual brain areas, as well as higher-order attentional networks. On the level of cortical oscillations, the alpha rhythm is a prominent EEG pattern that is involved in the prioritisation of visual information. It can be regarded as a correlate of inhibitory modulation within the visual network. METHODS: Twenty-one patients with visual snow syndrome were compared to 21 controls matched for age, sex, and migraine. We analysed the resting-state alpha rhythm by identifying the individual alpha peak frequency using a Fast Fourier Transform and then calculating the power spectral density around the individual alpha peak (+/- 1 Hz). We anticipated a reduced power spectral density in the alpha band over the primary visual cortex in participants with visual snow syndrome. RESULTS: There were no significant differences in the power spectral density in the alpha band over the occipital electrodes (O1 and O2), leading to the rejection of our primary hypothesis. However, the power spectral density in the alpha band was significantly reduced over temporal and parietal electrodes. There was also a trend towards increased individual alpha peak frequency in the subgroup of participants without comorbid migraine. CONCLUSIONS: Our main finding was a decreased power spectral density in the alpha band over parietal and temporal brain regions corresponding to areas of the secondary visual cortex. These findings complement previous functional and structural imaging data at a electrophysiological level. They underscore the involvement of higher-order visual brain areas, and potentially reflect a disturbance in inhibitory top-down modulation. The alpha rhythm alterations might represent a novel target for specific neuromodulation. TRIAL REGISTRATION: we preregistered the study before preprocessing and data analysis on the platform osf.org (DOI: https://doi.org/10.17605/OSF.IO/XPQHF , date of registration: November 19th 2022).


Assuntos
Ritmo alfa , Transtornos de Enxaqueca , Transtornos da Percepção , Humanos , Ritmo alfa/fisiologia , Estudos de Casos e Controles , Transtornos da Visão/complicações , Eletroencefalografia , Percepção Visual/fisiologia
5.
Int J Psychophysiol ; 199: 112341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580171

RESUMO

The ability to select task-relevant information and filter out task-irrelevant information is critical to our success in daily goal-directed behavior. Researchers call this ability filtering efficiency and divide it into three cognitive processing stages: detection of distractors, initiation of filtering, and unnecessary storage. Although researchers have conducted more studies on ERP components related to filtration efficiency, there are few studies related to neural oscillations. Alpha oscillation activity is related to the active processing of information and the suppression of distractors. In the current EEG study, we used the change detection task with distracted items to examine whether alpha activity during filtering initiation reflects reactive suppression of distractors by manipulating memory load levels and the presence or absence of distractors. Results showed that, the presence of the distractors caused an increase in the degree of desynchronization of the alpha oscillations, and in the subsequent time, the alpha activity level returned to a level consistent with the absence of interference conditions. Phase synchronization between frontal and posterior brain regions in the upper alpha oscillations found no effects associated with distractors. Based on these results, we believed that the alpha activity during the filtering initiation phase reflected the active processing of distractors, but this may also be due to lower perceptual load of the target items. In addition, we observed a dominance effect of the right hemisphere in both time-frequency results and connectivity results. We speculate that this effect is related to the activation of the right ventral frontoparietal network.


Assuntos
Memória de Curto Prazo , Percepção Visual , Humanos , Percepção Visual/fisiologia , Memória de Curto Prazo/fisiologia , Encéfalo/fisiologia , Cognição , Eletroencefalografia/métodos
6.
Sci Rep ; 14(1): 8858, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632303

RESUMO

It is often assumed that rendering an alert signal more salient yields faster responses to this alert. Yet, there might be a trade-off between attracting attention and distracting from task execution. Here we tested this in four behavioral experiments with eye-tracking using an abstract alert-signal paradigm. Participants performed a visual discrimination task (primary task) while occasional alert signals occurred in the visual periphery accompanied by a congruently lateralized tone. Participants had to respond to the alert before proceeding with the primary task. When visual salience (contrast) or auditory salience (tone intensity) of the alert were increased, participants directed their gaze to the alert more quickly. This confirms that more salient alerts attract attention more efficiently. Increasing auditory salience yielded quicker responses for the alert and primary tasks, apparently confirming faster responses altogether. However, increasing visual salience did not yield similar benefits: instead, it increased the time between fixating the alert and responding, as high-salience alerts interfered with alert-task execution. Such task interference by high-salience alert-signals counteracts their more efficient attentional guidance. The design of alert signals must be adapted to a "sweet spot" that optimizes this stimulus-dependent trade-off between maximally rapid attentional orienting and minimal task interference.


Assuntos
Atenção , Percepção Visual , Humanos , Tempo de Reação/fisiologia , Atenção/fisiologia , Percepção Visual/fisiologia , Registros , Discriminação Psicológica
7.
Nat Commun ; 15(1): 3347, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637553

RESUMO

Neurons in the inferotemporal (IT) cortex respond selectively to complex visual features, implying their role in object perception. However, perception is subjective and cannot be read out from neural responses; thus, bridging the causal gap between neural activity and perception demands independent characterization of perception. Historically, though, the complexity of the perceptual alterations induced by artificial stimulation of IT cortex has rendered them impossible to quantify. To address this old problem, we tasked male macaque monkeys to detect and report optical impulses delivered to their IT cortex. Combining machine learning with high-throughput behavioral optogenetics, we generated complex and highly specific images that were hard for the animal to distinguish from the state of being cortically stimulated. These images, named "perceptograms" for the first time, reveal and depict the contents of the complex hallucinatory percepts induced by local neural perturbation in IT cortex. Furthermore, we found that the nature and magnitude of these hallucinations highly depend on concurrent visual input, stimulation location, and intensity. Objective characterization of stimulation-induced perceptual events opens the door to developing a mechanistic theory of visual perception. Further, it enables us to make better visual prosthetic devices and gain a greater understanding of visual hallucinations in mental disorders.


Assuntos
Lobo Temporal , Percepção Visual , Animais , Masculino , Humanos , Macaca mulatta/fisiologia , Percepção Visual/fisiologia , Lobo Temporal/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Estimulação Luminosa
8.
Behav Brain Funct ; 20(1): 8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637870

RESUMO

One important role of the TPJ is the contribution to perception of the global gist in hierarchically organized stimuli where individual elements create a global visual percept. However, the link between clinical findings in simultanagnosia and neuroimaging in healthy subjects is missing for real-world global stimuli, like visual scenes. It is well-known that hierarchical, global stimuli activate TPJ regions and that simultanagnosia patients show deficits during the recognition of hierarchical stimuli and real-world visual scenes. However, the role of the TPJ in real-world scene processing is entirely unexplored. In the present study, we first localized TPJ regions significantly responding to the global gist of hierarchical stimuli and then investigated the responses to visual scenes, as well as single objects and faces as control stimuli. All three stimulus classes evoked significantly positive univariate responses in the previously localized TPJ regions. In a multivariate analysis, we were able to demonstrate that voxel patterns of the TPJ were classified significantly above chance level for all three stimulus classes. These results demonstrate a significant involvement of the TPJ in processing of complex visual stimuli that is not restricted to visual scenes and that the TPJ is sensitive to different classes of visual stimuli with a specific signature of neuronal activations.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Humanos , Lobo Parietal/fisiologia , Reconhecimento Psicológico , Neuroimagem , Análise Multivariada , Estimulação Luminosa , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Mapeamento Encefálico/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38557619

RESUMO

Visual selective attention studies generally tend to apply cuing paradigms to instructively direct observers' attention to certain locations, features or objects. However, in real situations, attention in humans often flows spontaneously without any specific instructions. Recently, a concept named "willed attention" was raised in visuospatial attention, in which participants are free to make volitional attention decisions. Several ERP components during willed attention were found, along with a perspective that ongoing alpha activity may bias the subsequent attentional choice. However, it remains unclear whether similar neural mechanisms exist in feature- or object-based willed attention. Here, we included choice cues and instruct cues in a feature-based selective attention paradigm, allowing participants to freely choose or to be instructed to attend a color for the subsequent target detection task. Pre-cue ongoing alpha oscillations, cue-evoked potentials and target-related steady-state visual evoked potentials (SSVEPs) were simultaneously measured as markers of attentional processing. As expected, SSVEP responses were similarly modulated by attention between choice and instruct cue trials. Similar to the case of spatial attention, a willed-attention component (Willed Attention Component, WAC) was isolated during the cue-related choice period by comparing choice and instruct cues. However, pre-cue ongoing alpha oscillations did not predict the color choice (yellow vs blue), as indicated by the chance level decoding accuracy (50%). Overall, our results revealed both similarities and differences between spatial and feature-based willed attention, and thus extended the understanding toward the neural mechanisms of volitional attention.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados/fisiologia , Sinais (Psicologia) , Estimulação Luminosa , Percepção Visual/fisiologia
10.
Nat Commun ; 15(1): 3116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600132

RESUMO

Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.


Assuntos
Córtex Auditivo , Localização de Som , Córtex Visual , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Estimulação Acústica/métodos
11.
PLoS One ; 19(4): e0301999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635686

RESUMO

To study how the nervous system processes visual information, experimenters must record neural activity while delivering visual stimuli in a controlled fashion. In animals with a nearly panoramic field of view, such as flies, precise stimulation of the entire visual field is challenging. We describe a projector-based device for stimulation of the insect visual system under a microscope. The device is based on a bowl-shaped screen that provides a wide and nearly distortion-free field of view. It is compact, cheap, easy to assemble, and easy to operate using the included open-source software for stimulus generation. We validate the virtual reality system technically and demonstrate its capabilities in a series of experiments at two levels: the cellular, by measuring the membrane potential responses of visual interneurons; and the organismal, by recording optomotor and fixation behavior of Drosophila melanogaster in tethered flight. Our experiments reveal the importance of stimulating the visual system of an insect with a wide field of view, and we provide a simple solution to do so.


Assuntos
Drosophila melanogaster , Campos Visuais , Animais , Drosophila melanogaster/fisiologia , Estimulação Luminosa , Software , Interneurônios , Voo Animal/fisiologia , Percepção Visual/fisiologia
12.
J Exp Child Psychol ; 242: 105897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461557

RESUMO

Previous studies have widely demonstrated that individuals with attention-deficit/hyperactivity disorder (ADHD) exhibit deficits in conflict control tasks. However, there is limited evidence regarding the performance of children with ADHD in cross-modal conflict processing tasks. The current study aimed to investigate whether children with ADHD have poor conflict control, which has an impact on sensory dominance effects at different levels of information processing under the influence of visual similarity. A total of 82 children aged 7 to 14 years, including 41 children with ADHD and 41 age- and sex-matched typically developing (TD) children, were recruited. We used the 2:1 mapping paradigm to separate levels of conflict, and the congruency of the audiovisual stimuli was divided into three conditions. In C trials, the target stimulus and the distractor stimulus were identical, and the bimodal stimuli corresponded to the same response keys. In PRIC trials, the distractor stimulus differed from the target stimulus and did not correspond to any response keys. In RIC trials, the distractor stimulus differed from the target stimulus, and the bimodal stimuli corresponded to different response keys. Therefore, we explicitly differentiated cross-modal conflict into a preresponse level (PRIC > C), corresponding to the encoding process, and a response level (RIC > PRIC), corresponding to the response selection process. Our results suggested that auditory distractors caused more interference during visual processing than visual distractors caused during auditory processing (i.e., typical auditory dominance) at the preresponse level regardless of group. However, visual dominance effects were observed in the ADHD group, whereas no visual dominance effects were observed in the TD group at the response level. A possible explanation is that the increased interference effects due to visual similarity and children with ADHD made it more difficult to control conflict when simultaneously confronted with incongruent visual and auditory inputs. The current study highlights how children with ADHD process cross-modal conflicts at multiple levels of information processing, thereby shedding light on the mechanisms underlying ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia
13.
PLoS One ; 19(3): e0300020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547216

RESUMO

When a context change is detected during motor learning, motor memories-internal models for executing movements within some context-may be created or existing motor memories may be activated and modified. Assigning credit to plausible causes of errors can allow for fast retrieval and activation of a motor memory, or a combination of motor memories, when the presence of such causes is detected. Features of the movement-context intrinsic to the movement dynamics, such as posture of the end effector, are often effective cues for detecting context change whereas features extrinsic to the movement dynamics, such as the colour of an object being moved, are often not. These extrinsic cues are typically not relevant to the motor task at hand and can be safely ignored by the motor system. We conducted two experiments testing if extrinsic but movement-goal relevant object-shape cues during an object-transport task can act as viable contextual cues for error assignment to the object, and the creation of new, object-shape-associated motor memories. In the first experiment we find that despite the object-shape cues, errors are primarily attributed to the hand transporting the object. In a second experiment, we find participants can execute differing movements cued by the object shape in a dual adaptation task, but the extent of adaptation is small, suggesting that movement-goal relevant object-shape properties are poor but viable cues for creating context specific motor memories.


Assuntos
Sinais (Psicologia) , Objetivos , Humanos , Movimento/fisiologia , Percepção Visual/fisiologia , Motivação , Desempenho Psicomotor/fisiologia
14.
J Neurophysiol ; 131(4): 709-722, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478896

RESUMO

Neurons in sensory and motor cortices tend to aggregate in clusters with similar functional properties. Within the primate dorsal ("where") pathway, an important interface between three-dimensional (3-D) visual processing and motor-related functions consists of two hierarchically organized areas: V3A and the caudal intraparietal (CIP) area. In these areas, 3-D visual information, choice-related activity, and saccade-related activity converge, often at the single-neuron level. Characterizing the clustering of functional properties in areas with mixed selectivity, such as these, may help reveal organizational principles that support sensorimotor transformations. Here we quantified the clustering of visual feature selectivity, choice-related activity, and saccade-related activity by performing correlational and parametric comparisons of the responses of well-isolated, simultaneously recorded neurons in macaque monkeys. Each functional domain showed statistically significant clustering in both areas. However, there were also domain-specific differences in the strength of clustering across the areas. Visual feature selectivity and saccade-related activity were more strongly clustered in V3A than in CIP. In contrast, choice-related activity was more strongly clustered in CIP than in V3A. These differences in clustering may reflect the areas' roles in sensorimotor processing. Stronger clustering of visual and saccade-related activity in V3A may reflect a greater role in within-domain processing, as opposed to cross-domain synthesis. In contrast, stronger clustering of choice-related activity in CIP may reflect a greater role in synthesizing information across functional domains to bridge perception and action.NEW & NOTEWORTHY The occipital and parietal cortices of macaque monkeys are bridged by hierarchically organized areas V3A and CIP. These areas support 3-D visual transformations, carry choice-related activity during 3-D perceptual tasks, and possess saccade-related activity. This study quantifies the functional clustering of neuronal response properties within V3A and CIP for each of these domains. The findings reveal domain-specific cross-area differences in clustering that may reflect the areas' roles in sensorimotor processing.


Assuntos
Movimentos Sacádicos , Percepção Visual , Animais , Macaca mulatta , Percepção Visual/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos
15.
Sci Rep ; 14(1): 5879, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467774

RESUMO

Traditional vision screenings in schools are limited to simple visual tasks, yet students in their daily learning face more complex visual environments. Binocular rivalry tasks can partially simulate the visual challenges of real visual environments and activate advanced visual processing mechanisms that simple visual tasks cannot. Therefore, by superimposing binocular rivalry-state tasks onto simple visual tasks, we have developed an innovative vision screening program to rapidly and extensively assess students' visual performance in complex environments. This is a cross-sectional study in which we investigated the performance of 1126 grade 1-6 students from a primary school in Wuxi, China, in rivalry-state stereoscopic vision tasks. The correlation between the screening results of 1044 students and their academic achievements was also statistically analyzed. The study results revealed pass rates of 53.5-60.5% across various visual tests. Specifically, for first-grade students, there was a statistically significant difference in standardized Chinese scores between the group that failed and the group that passed the rivalry-state stereoscopic vision test (- 0.49 ± 3.42 vs. 0.22 ± 0.58, t = - 2.081, P = 0.04). This result underscores the importance of focusing on the visual adaptability of first graders in complex environments.Trail registration: Ethics Committee of Affiliated Children's Hospital of Jiangnan University-Certificate number: WXCH2022-04-027.


Assuntos
Sucesso Acadêmico , Estudantes , Criança , Humanos , Estudos Transversais , Percepção Visual/fisiologia , Instituições Acadêmicas , Visão Binocular/fisiologia
16.
PLoS Comput Biol ; 20(3): e1011921, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452057

RESUMO

In an ever-changing visual world, animals' survival depends on their ability to perceive and respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of this sensory processing, orchestrating neural responses to perturbations in visual flow. However, the underlying neural mechanisms that lead to distinct cortical responses to such perturbations remain enigmatic. In this study, our objective was to uncover the neural dynamics that govern V1 neurons' responses to visual flow perturbations using a biologically realistic computational model. By subjecting the model to sudden changes in visual input, we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely, depolarizing and hyperpolarizing responses. We found that this segregation was primarily driven by the competition between external visual input and recurrent inhibition, particularly within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a more prominent role for inhibitory mechanisms in the visual processing of the upper cortical layers. Our findings share similarities with recent experimental studies focusing on the opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex during visual flow perturbations.


Assuntos
Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia , Estimulação Luminosa , Neurônios/fisiologia , Sensação , Percepção Visual/fisiologia
17.
Nat Commun ; 15(1): 2466, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503746

RESUMO

How the activity of neurons gives rise to natural vision remains a matter of intense investigation. The mid-level visual areas along the ventral stream are selective to a common class of natural images-textures-but a circuit-level understanding of this selectivity and its link to perception remains unclear. We addressed these questions in mice, first showing that they can perceptually discriminate between textures and statistically simpler spectrally matched stimuli, and between texture types. Then, at the neural level, we found that the secondary visual area (LM) exhibited a higher degree of selectivity for textures compared to the primary visual area (V1). Furthermore, textures were represented in distinct neural activity subspaces whose relative distances were found to correlate with the statistical similarity of the images and the mice's ability to discriminate between them. Notably, these dependencies were more pronounced in LM, where the texture-related subspaces were smaller than in V1, resulting in superior stimulus decoding capabilities. Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural representations, and perceptual sensitivity-a distinct hallmark of efficient coding computations.


Assuntos
Córtex Visual , Vias Visuais , Animais , Camundongos , Estimulação Luminosa/métodos , Vias Visuais/fisiologia , Córtex Visual/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia
18.
Nat Commun ; 15(1): 2456, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503769

RESUMO

The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.


Assuntos
Córtex Visual , Animais , Camundongos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
19.
Cognition ; 246: 105768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479091

RESUMO

The independent effects of short- and long-term experiences on visual perception have been discussed for decades. However, no study has investigated whether and how these experiences simultaneously affect our visual perception. To address this question, we asked participants to estimate their self-motion directions (i.e., headings) simulated from optic flow, in which a long-term experience learned in everyday life (i.e., straight-forward motion being more common than lateral motion) plays an important role. The headings were selected from three distributions that resembled a peak, a hill, and a flat line, creating different short-term experiences. Importantly, the proportions of headings deviating from the straight-forward motion gradually increased in the peak, hill, and flat distributions, leading to a greater conflict between long- and short-term experiences. The results showed that participants biased their heading estimates towards the straight-ahead direction and previously seen headings, which increased with the growing experience conflict. This suggests that both long- and short-term experiences simultaneously affect visual perception. Finally, we developed two Bayesian models (Model 1 vs. Model 2) based on two assumptions that the experience conflict altered the likelihood distribution of sensory representation or the motor response system. The results showed that both models accurately predicted participants' estimation biases. However, Model 1 predicted a higher variance of serial dependence compared to Model 2, while Model 2 predicted a higher variance of the bias towards the straight-ahead direction compared to Model 1. This suggests that the experience conflict can influence visual perception by affecting both sensory and motor response systems. Taken together, the current study systematically revealed the effects of long- and short-term experiences on visual perception and the underlying Bayesian processing mechanisms.


Assuntos
Percepção de Movimento , Fluxo Óptico , Humanos , Percepção de Movimento/fisiologia , Teorema de Bayes , Percepção Visual/fisiologia , Aprendizagem
20.
Hum Brain Mapp ; 45(4): e26652, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488473

RESUMO

Time-resolved decoding of speed and risk perception in car driving is important for understanding the perceptual processes related to driving safety. In this study, we used an fMRI-compatible trackball with naturalistic stimuli to record dynamic ratings of perceived risk and speed and investigated the degree to which different brain regions were able to decode these. We presented participants with first-person perspective videos of cars racing on the same course. These videos varied in terms of subjectively perceived speed and risk profiles, as determined during a behavioral pilot. During the fMRI experiment, participants used the trackball to dynamically rate subjective risk in a first and speed in a second session and assessed overall risk and speed after watching each video. A standard multivariate correlation analysis based on these ratings revealed sparse decodability in visual areas only for the risk ratings. In contrast, the dynamic rating-based correlation analysis uncovered frontal, visual, and temporal region activation for subjective risk and dorsal visual stream and temporal region activation for subjectively perceived speed. Interestingly, further analyses showed that the brain regions for decoding risk changed over time, whereas those for decoding speed remained constant. Overall, our results demonstrate the advantages of time-resolved decoding to help our understanding of the dynamic networks associated with decoding risk and speed perception in realistic driving scenarios.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Lobo Temporal , Percepção , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...